Για σχόλια, παρατηρήσεις, διορθώσεις, αβλεψίες κλπ μη
διστάσετε να επικοινωνήστε μαζί μου. Όσες προσομοιώσεις φέρουν το όνομά μου είναι ελεύθερες προς χρήση από
όλους, αρκεί να μην αλλαχθούν τα σύμβολα πνευματικής ιδιοκτησίας. Τα
αρχεία μπορείτε να τα βρείτε στο menu Download.
Σύνδεση
Με δυο λόγια
Ποιός έχει το απόλυτο ρεκόρ στην ταχύτητα;
Το φως! κινείται με ταχύτητα 300.000 km/s. Βέβαια Ο Λούκυ Λούκ είναι πιο γρήγορος από την σκιά του αλλά εκεί η Φυσική ... σηκώνει ψηλά τα χέρια.
Με την συγκεκριμένη προσομοίωση μπορείς να μελετήσεις την σύνθεση δύο απλών αρμονικών ταλαντώσεων. Έχεις την δυνατότητα να μεταβάλεις την συχνότητα το πλάτος και την αρχική φάση κάθε ταλάντωσης. Την αλλαγή της αρχικής φάσης εκτός από το σύνθετο πλαίσιο μπορείς να την μεταβάλεις σύροντας τα περιστρεφόμενα διανύσματα στο πάνω σχήμα. Αν είναι τσεκαρισμένη η επιλογή 'Επικάλυψη' τότε οι απομακρύνσεις σχεδιάζονται σε κοινό διάγραμμα για άμεση σύγκριση. Έχεις επίσης την δυνατότητα να σύρεις την κατακόρυφη γραμμή και να καθορίσεις την χρονική στιγμή.
Συνηθίζουμε στην Φυσική να υπολογίζουμε την $\mathsf{\,εφ\,}θ$ Για να προσδιοριστεί όμως επακριβώς η γωνία πρέπει να είμαστε προσεκτικοί (δες την παρατήρηση)
Το τελικό συμπέρασμα είναι ότι η σύνθεση δύο απλών αρμονικών ταλαντώσεων της ίδιας συχνότητας οδηγεί επίσης σε απλή αρμονική ταλάντωση της ίδιας συχνότητας.
Παρατήρηση
Από την εξίσωση $(3)$ δεν μπορεί να προσδιοριστεί μονότιμα η γωνία $θ$ γιατί και η γωνία $π+θ$ έχει την ίδια εφαπτομένη $\mathsf{\,εφ\,}(π+θ)=\mathsf{\,εφ\,}θ$. Αν όμως γνωρίζουμε το $\mathsf{\,ημ\,}θ$ και το $\mathsf{\,συν\,}θ$ μπορούμε να προσδιορίσουμε το τεταρτημόριο στο οποίο ανήκει η γωνία άρα και την γωνία.
Αφού δεν μπορούμε να στηριχθούμε στην εξίσωση $(3)$ γιατί επιμένουμε σε αυτήν; Η απάντηση είναι πως μπορούμε να προσδιορίσουμε την γωνία $θ$ με την προϋπόθεση όμως να υπολογίσουμε την γωνία που σχηματίζει ένα σημείο με συντεταγμένες $y=A_2\mathsf{\,ημ\,}φ$ και $x=A_1+A_2\mathsf{\,συν\,}φ$. Έτσι αν δεν κάνουμε αλγεβρικές πράξεις με τα πρόσημα, τότε από το πρόσημο του αριθμητική που παριστάνει το $\mathsf{\,ημ\,}θ$ και το πρόσημο του παρονομαστή που παριστάνει το $\mathsf{\,συν\,}θ$ μπορούμε να βρούμε το τεταρτημόριο στο οποίο βρίσκεται η γωνία. πχ ας υποθέσουμε ότι μετά από πράξεις βρήκαμε πως $A_2\mathsf{\,ημ\,}φ=-1$ ενώ $A_1+A_2\mathsf{\,συν\,}φ=+1$ (τέτοια περίπτωση έχουμε όταν πχ η διαφορά φάσης των δύο ταλαντώσεων είναι $φ=\frac{3π}{2}$) τότε
$$\mathsf{\,εφ\,}θ=\frac{-1}{+1}$$
τότε ψάχνουμε να βρούμε γωνία για την οποία το $\mathsf{\,ημ\,}θ\lt 0$ (αριθμητής) και $\mathsf{\,συν\,}θ\gt 0$ (παρονομαστής) και η εφαπτομένη της είναι $\mathsf{\,εφ\,}θ=-1$. Για να συμβαίνει αυτό θα πρέπει η γωνία να βρίσκεται στο 4ο τεταρτημόριο άρα $θ=2π-\frac{π}{4}=\frac{7π}{4}$.
Κατεβάστε από τον παρακάτω σύνδεσμο σημειώσεις πάνω στο συγκεκριμένο θέμα με κάποια λυμένα παραδείγματα.
ΕΥΧΑΡΙΣΤΟΥΜΕ ΓΙΑ ΤΗΝ ΑΡΙΣΤΗ ΔΟΥΛΕΙΑ.ΕΝΑ ΧΡΗΣΙΜΟ ΕΡΓΑΛΕΙΟ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΣΥΝΘΕΣΗΣ. ΚΑΙ ΜΙΑ ΠΑΡΑΚΛΗΣΗ.
ΑΝ ΜΠΟΡΕΙΤΕ ΠΡΟΣΘΕΣΤΕ ΚΑΙ ΤΗ ΦΑΣΗ φ=π/4.
ΚΑΙ ΠΑΛΙ ΕΥΧΑΡΙΣΤΟΥΜΕ.
ΕΥΧΑΡΙΣΤΟΥΜΕ, ΟΙ ΜΑΘΗΤΕΣ ΜΟΥ ΚΑΙ ΕΓΩ ΠΡΟΣΩΠΙΚΑ , ΤΟΝ ΚΑΛΟ ΣΥΝΑΔΕΛΦΟ ΓΙΑ ΤΗΝ ΕΞΑΙΡΕΤΗ ΔΟΥΛΕΙΑ ΤΟΥ Η ΟΠΟΙΑ ΔΙΕΥΚΟΛΥΝΕ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΜΟΥ ΣΤΗ ΣΥΝΘΕΣΗ ΤΩΝ ΤΑΛΑΝΤΩΣΕΩΝ.