Seilias

Physics and Photography

Σχόλια - Παρατηρήσεις

Για σχόλια,  παρατηρήσεις,  διορθώσεις, αβλεψίες κλπ μη διστάσετε να επικοινωνήστε μαζί μου. Όσες προσομοιώσεις φέρουν το όνομά μου είναι ελεύθερες προς χρήση από όλους, αρκεί να μην αλλαχθούν τα σύμβολα πνευματικής ιδιοκτησίας. Τα αρχεία μπορείτε να τα βρείτε στο menu Download.
 

Σύνδεση






Ξεχάσατε τον κωδικό σας;

Με δυο λόγια

Ας υποθέσουμε πως ένα παγόβουνο έχει ύψος 100 μέτρα, πόσα μέτρα άραγε θα φαινόταν πάνω από την θάλασσα?


Μόνο τα 10m, τα υπόλοιπα 90m θα ήταν κάτω από την θάλασσα!  (Αυτό δικαιολογεί την έκφραση "Η κορυφή του παγόβουνου")

 
Αρχική arrow Φυσική arrow Μηχανική arrow Δύο κινητά στον ίδιο κύκλο - HTML5
Απρ
19
2020
Δύο κινητά στον ίδιο κύκλο - HTML5 Εκτύπωση E-mail
(6 ψήφοι)
Εφαρμογή με την οποία μπορούμε να μελετήσουμε την κίνηση δυο κινητών πάνω στον ίδιο κύκλο. Μπορούμε να μεταβάλουμε την γωνιακή ταχύτητα και κάθε σώματος και την ακτίνα της κυκλικής τροχιάς.

 

Πρόβλημα

Δυο δρομείς κινούνται στον ίδιο κύκλο και ξεκινούν από το ίδιο σημείο. Αν $T_1$ και $T_2$ είναι οι περίοδοι των δύο δρομέων, να βρεθεί ο χρόνος που θα συναντηθούν για πρώτη φορά όταν κινούνται
α) προς την ίδια κατεύθυνση.
β) με αντίθετη κατεύθυνση

Λύση

α) Όπως στην Formula-1 όταν το πιο γρήγορο αυτοκίνητο συναντά το τελευταίο τότε λέμε ότι του έχει ρήξει γύρο. Δηλαδή όταν οι δύο δρομείς ξανασυναντηθούν τότε ο πρώτος θα έχει κάνει μια στροφή παραπάνω. Η παραπάνω συνθήκη μκπορεί να γραφεί με μήκος διαδρομής ως εξής

$$s_1=s_2+s_\mathsf{κύκλου}$$ $$υ_1t=υ_2t+2πR$$ $$\frac{2πR}{T_1}t=\frac{2πR}{T_2}t+2πR$$ $$\frac{1}{T_1}t=\frac{1}{T_2}t+1$$ $$\left(\frac{1}{T_1}-\frac{1}{T_2}\right)t=1$$

 

$$t=\frac{T_1T_2}{T_2-T_1}$$ $$(1)$$

β) Στην περίπτωση που οι δύο δρομείς κινούνται με αντίθετη κατεύθυνση τότε

$$s_1+s_2=s_\mathsf{κύκλου}$$ $$υ_1t+υ_2t=2πR$$ $$\frac{2πR}{T_1}t+\frac{2πR}{T_2}t=2πR$$ $$\left(\frac{1}{T_1}+\frac{1}{T_2}\right)t=1$$

 

$$t=\frac{T_1T_2}{T_2+T_1}$$ $$(2)$$
Σχόλια
Προσθήκη νέου Αναζήτηση
+/-
Γράψτε σχόλιο
Όνομα:
Email:
 
Τίτλος:
 

3.26 Copyright (C) 2008 Compojoom.com / Copyright (C) 2007 Alain Georgette / Copyright (C) 2006 Frantisek Hliva. All rights reserved."

Τελευταία ανανέωση ( 07.07.20 )
 
< Προηγ.   Επόμ. >

Φυσική

Μηχανική

Ηλεκτρομαγνητισμός

 
Joomla Templates by Joomlashack