Η Ανάκλαση του φωτός από την πλευρά της Κβαντικής Ηλεκτροδυναμικής (QED)
Η ανάκλαση του φωτός είναι ίσως το πιο γνωστό φαινόμενο σε όλους μας. Σε αυτήν την εργασία θα γνωρίσουμε τις βασικές αρχές της κβαντικής ηλεκτροδυναμικής και θα ερμηνεύουμε με βάση αυτήν την θεωρία την πορεία που ακολουθεί το φως στο φαινόμενο της ανάκλασης.
Η αντίληψη που επικρατεί στους περισσότερους είναι πως το φως αποτελείται από σωματίδια που υπακούουν στους νόμους του Νεύτωνα δηλαδή κάτι σαν ελαστικά μπαλάκια που όταν προσπέσουν πάνω σε μια επιφάνεια ανακλώνται με μια γωνία ίση με την γωνία πρόσπτωσης. Αυτήν την εικόνα θα προσπαθήσουμε να την αλλάξουμε και να την προσαρμόσουμε στην κβαντική θεωρία.
Η κβαντική θεωρία είναι ένα από τα σημαντικότερα επιτεύγματα της φυσικής και του ανθρώπινου πνεύματος. Το δυσκολότερο με αυτήν την θεωρία δεν είναι να την καταλάβουμε αλλά να την πιστέψουμε! Στηρίζεται στην πιθανότητα. Δεν μπορούμε να ισχυριστούμε ότι ένα γεγονός θα πραγματοποιηθεί με βεβαιότητα αλλά το μόνο που μπορούμε να κάνουμε είναι να υπολογίσουμε την πιθανότητα πραγματοποίησης του γεγονότος. Μια αντίληψη που δύσκολα την δέχεται κανείς. Από την θεωρία αυτή δεν ξέφυγε ούτε το φως (για την ακρίβεια η θεωρία αυτή γεννήθηκε από το φως). Το φως ναι μεν αποτελείται από σωματίδια αλλά αυτά δεν είναι τα κλασικά ελαστικά σωματίδια του Νεύτωνα που έχουμε στο πίσω μέρος του μυαλού μας. Αποτελείται από ένα νέου είδους σωματίδια, τα "φωτόνια". Αυτά τα νέα σωματίδια είναι κβαντικά σωματίδια και δεν υπακούουν στους νόμους των εμπειριών μας, δεν είναι συμβατά με τον κόσμο των αντιλήψεών μας. Δεν μπορούμε να πούμε ότι ένα φωτόνιο ξεκίνησε από αυτό το σημείο και έφτασε σε κάποιο άλλο κινούμενο ευθύγραμμα. Το μόνο που μπορούμε να πούμε είναι πως υπάρχει μια πιθανότητα για να πραγματοποιηθεί αυτό το γεγονός. Η κβαντική ηλεκτροδυναμική μελετά τα φωτόνια και πως αυτά διαδίδονται με την ύλη και στηριζόμενη σε δύο απλούς κανόνες.
Κανόνας 1ος :
Για να υπολογιστεί η πιθανότητα πραγματοποίησης ενός συμβάντος σχεδιάζουμε βέλη. "Η πιθανότητα πραγματοποίησης ενός συμβάντος είναι ίση με το τετράγωνο του βέλους το οποίο ονομάζεται «πλάτος πιθανότητας»."
πχ πόση είναι πιθανότητα πραγματοποίησης ενός συμβάντος όταν το πλάτος πιθανότητας είναι 0.8;
Κανόνας 2ος :
"Όταν ένα συμβάν μπορεί να πραγματοποιηθεί με πολλούς εναλλακτικούς τρόπους τότε σχεδιάζουμε ένα βέλος για κάθε τρόπο και το τελικό βέλος του συμβάντος είναι αυτό που προκύπτει από την πρόσθεση όλων των βελών."
Για να προσθέσουμε βέλη τα καθιστούμε "διαδοχικά" δηλαδή στο τέλος του ενός τοποθετούμε την αρχή του άλλου. Το βέλος που έχει ως αρχή την αρχή του πρώτου και τέλος το τέλος του τελευταίου είναι το τελικό βέλος.
Για εξάσκηση στην πρόσθεση βελών θα χρησιμοποιήσουμε την παρακάτω προσομοίωση. Αν και έχουν σχεδιαστεί τέσσερα βέλη με κοινή αρχή εσείς μπορείτε να προσθέσετε ή να αφαιρέσετε και άλλα βέλη πατώντας τα πλήκτρα (+) και (-). Μπορείτε επίσης να τα περιστρέψετε και να τα μετακινήσετε αν τα σύρετε από το τέλος τους ή από την αρχή τους. Προσπαθήστε να τα τοποθετήστε έτσι ώστε να είναι διαδοχικά. Τσεκάρετε την επιλογή "Συνισταμένη" για να δείτε το αποτέλεσμα της πρόσθεσης. Σύρτε το βέλος αυτό ώστε να έχει αρχή την αρχή του πρώτου βέλους και αν όλα έχουν γίνει σωστά τότε το τέλος του συνολικού βέλος θα πρέπει να είναι στο τέλος του τελευταίου.
Σε αυτό το σημείο ας επιστρέψουμε στο φαινόμενο της ανάκλασης. Ας υποθέσουμε πως ένα φωτόνιο εκπέμπεται από την πηγή, ανακλάται σε μια επιφάνεια και συλλαμβάνεται από έναν φωτοπολλαπλασιαστή. Ο φωτοπολλαπλασιαστής είναι μια συσκευή που ανιχνεύει φωτόνια. Κάθε φορά που φτάνει ένα φωτόνιο σε αυτόν δίνει ένα σήμα άφιξης του φωτονίου, ας πούμε ότι δίνει ένα ηχητικό σήμα "τακ". Η κβαντική θεωρία μας λέει πως δεν μπορούμε να γνωρίζουμε με βεβαιότητα ποια διαδρομή ακολούθησε το φωτόνιο. Η πορεία του μας είναι παντελώς άγνωστη. Όλες οι διαδρομές ανάκλασης έχουν σχεδόν τις ίδιες πιθανότητες να πραγματοποιηθούν και όχι μόνο αυτή για την οποία η γωνία πρόσπτωσης είναι ίση με την γωνία ανάκλασης.
Αφού όλες οι διαδρομές είναι το ίδιο πιθανές τότε για κάθε δυνατό τρόπο πραγματοποίησης της μετάβασης ενός φωτονίου από την πηγή, αφού ανακλαστεί από την επιφάνεια, αντιστοιχούμε ένα βέλος. Επειδή όλα τα συμβάντα έχουν την ίδια πιθανότητα να πραγματοποιηθούν όλα τα βέλη θα είναι ίσα σε μέγεθος και το τετράγωνο του μήκους αυτού το βέλους μας δίνει την πιθανότητα πραγματοποίησης του συμβάντος (μετάβαση του φωτονίου από την πηγή φωτός στον ανιχνευτή).
Μέχρι στιγμής καθορίσαμε πως όλα τα βέλη έχουν ένα συγκεκριμένο μήκος για να καθορίσουμε όμως ένα βέλος χρειαζόμαστε εκτός από το μήκος του και την γωνία στροφής του. Για τον καθορισμό της γωνίας στροφής κάθε μικρού βέλους φανταζόμαστε ένα χρονόμετρο το οποίο αρχίζει να λειτουργεί την στιγμή εκπομπής του φωτονίου και σταματά την στιγμή της λήψης του από τον ανιχνευτή φωτός. Το υποθετικό αυτό χρονόμετρο περιστρέφεται με συχνότητα ίση με αυτή του χρώματος του φωτός. Το λευκό φως αποτελείται από πολλά χρώματα. Το κάθε χρώμα χαρακτηρίζεται από έναν αριθμό που είναι συχνότητα του. Το κόκκινο φως έχει την μικρότερη συχνότητα από όλα τα ορατά χρώματα, ενώ το μπλε έχει την μεγαλύτερη. Το βέλος του κόκκινου χρώματος περιστρέφεται 14 400 φορές για κάθε εκατοστό διαδρομής του φωτός. Στο τέλος της διαδρομής του φωτονίου η κατεύθυνση του βέλους θα ταυτίζεται με την κατεύθυνση του δείκτη του χρονομέτρου.
Στην παρακάτω προσομοίωση φαίνεται η επιφάνεια ενός καθρέφτη, η πηγή μονοχρωματικού φωτός και ο ανιχνευτής φωτός. Σχεδιάζεται επίσης η διαδρομή που θα ακολουθούσε ένα ελαστικό σωματίδιο αν είχε ανακλαστεί πάνω στον καθρέφτη. Για αυτήν την διαδρομή ισχύει ότι η γωνία πρόσπτωσης είναι ίση με την γωνία ανάκλασης. Τα φωτόνια όμως δεν είναι υποχρεωμένα από κάποιον νόμο να ακολουθούν αυτήν την διαδρομή. Μπορούν να επιλέξουν οποιαδήποτε δυνατή διαδρομή. Στην προσομοίωση σχεδιάζονται ευθείες αυτό όμως είναι μια απλοϊκή εικόνα. Το φωτόνιο μπορεί να ακολουθήσει και διαδρομή που δεν είναι ευθύγραμμη. Για να μελετήσουμε το φαινόμενο χωρίζουμε τον καθρέφτη σε 30 τμήματα. Σε καθένα από αυτά τα τμήματα θεωρούμε ότι μπορεί να ανακλαστεί και ένα φωτόνιο. Σε κάθε τέτοια διαδρομή ανάκλασης δεν ακολουθείται ο κανόνας πως η γωνία πρόσπτωσης να είναι ίση με την γωνία ανάκλασης. Όλες οι διαδρομές είναι πιθανές και σε κάθε πιθανή διαδρομή έχουμε αντιστοιχήσει και ένα μικρό βέλος. Όλα τα βέλη έχουν ίσα μήκη γιατί η κάθε διαδρομή όπως έχουμε ήδη δει έχει την ίδια πιθανότητα για να πραγματοποιηθεί. Ξεκινήστε την προσομοίωση πατώντας το πλήκτρο play .
Αν θέλετε επιλέξτε την ταχύτητα εκτέλεσης της προσομοίωσης μετακινώντας τον δρομέα "Αργή / Γρήγορη προβολή" του μενού της προσομοίωσης ώστε να μπορείτε να παρακολουθείτε πιο άνετα τις μεταβολές που πραγματοποιούνται. Ας αναλύσουμε τα αποτελέσματα που προκύπτουν από την παραπάνω θεώρηση.
|