ΔΕΝ καταγράφει και δεν απαιτεί για την πλήρη χρήση της κανένα προσωπικό σας δεδομένο.
ΔΕΝ υπάρχουν διαφημίσεις.
ΔΕΝ απαιτεί συνδρομή, είναι Δωρεάν.
Για σχόλια, παρατηρήσεις, διορθώσεις, αβλεψίες κλπ μη
διστάσετε να επικοινωνήστε μαζί μου. Όσες προσομοιώσεις φέρουν το όνομά μου είναι ελεύθερες προς χρήση από
όλους, αρκεί να μην αλλαχθούν τα σύμβολα πνευματικής ιδιοκτησίας. Τα
αρχεία μπορείτε να τα βρείτε στο menu Download.
Σύνδεση
Με δυο λόγια
Πότε είναι πιο κοντά η Γη στον Ήλιο; Το καλοκαίρι ή τον
Χειμώνα;
Αν απαντήσατε το
Καλοκαίρι κάνετε λάθος. Οι εποχές δεν οφείλονται στην απόσταση Γης -
Ηλίου αλλά στο ότι ο άξονας περιστροφής της Γης δεν είναι κάθετος στο
επίπεδο περιστροφής της γύρω από τον Ήλιο. Έτσι όταν το Βόρειο
ημισφαίριο έχει καλοκαίρι το Νότιο ημισφαίριο έχει χειμώνα.
Με την προσομοίωση αυτή μπορούμε να μελετήσουμε την μεταπτωτική κίνηση ενός τροχού κάτω από την επίδραση της ροπής του βάρους. Έχουμε την δυνατότητα να μεταβάλλουμε την ροπή αδράνειας του τροχού, την μάζα του τροχού την θέση το κέντρου μάζας και την γωνιακή ταχύτητα ιδιοπεριστροφής.
Αν αρχικά το σώμα δεν περιστρέφεται δηλαδή $L_0=0$ τότε η τελική στροφορμή θα έχει την κατεύθυνση την ροπής της δύναμης και ο τροχός θα κινηθεί περίπου όπως ένα εκκρεμές.
αν $L_0=0$ τότε $\vec{L}=\vec{τ}dt$ δηλαδή τα $\vec{ω},\vec{τ}$ θα είναι ομόρροπα
Αν όμως το σώμα έχει στροφορμή (δηλαδή ο τροχός περιστρέφεται) τότε εξαιτίας της ροπής η στροφορμή μετά από χρόνο $dt$ θα έχει ελαφρώς περιστραφεί κατά $dφ$. Δηλαδή σε αυτήν την περίπτωση η ροπή αναγκάζει τον τροχό να περιστραφεί αντίθετα με την φορά των δεικτών του ρολογιού και όχι να «πέσει».
Για $m=2\,\mathrm{kg}$, $g=10\,\mathrm{m/s}^2$, $r=0.1\,\mathrm{m}$, $I=0.25\,\mathrm{kg}\cdot \mathrm{m}^2$, $ω=20\,\mathrm{rad/s}$ προκύπτει $Ω=0.4\,\mathrm{rad/s}$
Παρατήρηση.
Η παραπάνω γωνιακή ταχύτητα ονομάζεται γωνιακή ταχύτητα μετάπτωσης. Το φαινόμενο βέβαια είναι αρκετά περίπλοκο και τα παραπάνω είναι προσεγγιστικά στην περίπτωση που η ιδιοστροφορμή είναι περίπου ίση με την ολική στροφορμή όταν δηλαδή η γωνιακή ταχύτητα μετάπτωσης είναι αρκετά μικρή. Την κίνηση του σώματος μπορείτε να την δείτε μεταβάλλοντας τις παραμέτρους.