Seilias

Physics and Photography

Σχόλια - Παρατηρήσεις

Για σχόλια,  παρατηρήσεις,  διορθώσεις, αβλεψίες κλπ μη διστάσετε να επικοινωνήστε μαζί μου. Όσες προσομοιώσεις φέρουν το όνομά μου είναι ελεύθερες προς χρήση από όλους, αρκεί να μην αλλαχθούν τα σύμβολα πνευματικής ιδιοκτησίας. Τα αρχεία μπορείτε να τα βρείτε στο menu Download.
 

Σύνδεση






Ξεχάσατε τον κωδικό σας;

Με δυο λόγια

 Τι ύψος πρέπει να έχει ένας καθρέφτης για να φανούμε ολόκληροι;


Ακριβώς το μισό μας ύψος. Δηλαδή αν το ύψος μας είναι 1.80m  τότε ένας καθρέφτης των 0.90m (90 πόντους) είναι αρκετός για να μας δείξει ολόκληρους, αρκεί να τοποθετηθεί σωστά. Θα πρέπει το πάνω μέρος του να είναι στο ύψος του μετώπου μας.

Δείτε την προσομοίωση κάνοντας κλικ εδώ

 
Αρχική arrow Φυσική arrow Ταλαντώσεις και Κύματα arrow Ταλάντωση σε Κατακόρυφο Ελατήριο - HTML5
Αύγ
09
2019
Ταλάντωση σε Κατακόρυφο Ελατήριο - HTML5 Εκτύπωση E-mail
(2 ψήφοι)
Προσομοίωση με την οποία μπορούμε να μελετήσουμε την ταλάντωση ενός σώματος που είναι δεμένο σε κατακόρυφο ελατήριο. Στο διάγραμμα φαίνεται η δύναμη του ελατηρίου σε συνάρτηση με την απομάκρυνση. Μπορούμε να σύρουμε το σώμα για να καθορίσουμε την αρχική του φάση και το πλάτος του.

Στό σχήμα φαίνεται ένα σώμα μάμας $m$ να ισορροπεί πάνω σε ένα κατακόρυφο ελατήριο. Το ζητούμενο είναι να αποδειχθεί ότι το σώμα κάνει απλή αρμονική ταλάντωση και να υπολογιστεί η δύναμη του ελατηρίου.

Θεωρούμε σύστημα συντεταγμένων με αρχή Ο την θέση ισορροπίας του σώματος και θετική φορά προς τα πάνω. Σε αυτήν την περίπτωση στην θέση ισορροπίας του σώματος ισχύει

$$\sum \vec F=\vec 0$$ $$F_\mathsf{ελ}+(-mg)=0$$

 

$$kΔl_0=mg$$

$$(1)$$

Θεωρούμε το σώμα σε τυχαία θέση. (Παρατήρηση: Λόγω της διανυσματικότητας της απομάκρυνσης καλό είναι για αποφυγή λαθών να θερούμε την τυχαία θέση στα θετικά του άξονα ώστε το $x$ να αντιμετωπίζεται και ως απόσταση)

$$\sum F=ma$$ $$\sum F=F_\mathsf{ελ}+(-mg)$$ $$\sum F=k(Δl_0-x)-mg$$ $$\sum F=kΔl_0-kx-mg$$ Λόγω της (1) έχουμε τελικά

 

$$\sum F=-kx$$

$$(2)$$

Η παραπάνω εξίσωση ισχύει για κάθε $x$ και αποδεικνύει ότι το σώμα εκτελεί απλή αρμονική ταλάντωση με $D=k$.

Για τον υπολογισμό της δύναμης του ελατηρίου μπορούμε να χρησιμοποιήσουμε το αποτέλεσμα της απλής αρμονικής ταλάντωσης δηλαδή

$$\sum F=F_\mathsf{ελ}+(-mg)$$ $$-kx=F_\mathsf{ελ}-mg$$

 

$$F_\mathsf{ελ}=mg-kx$$

$$(3)$$

Σχόλια
Προσθήκη νέου Αναζήτηση
+/-
Γράψτε σχόλιο
Όνομα:
Email:
 
Τίτλος:
 

3.26 Copyright (C) 2008 Compojoom.com / Copyright (C) 2007 Alain Georgette / Copyright (C) 2006 Frantisek Hliva. All rights reserved."

Τελευταία ανανέωση ( 15.09.19 )
 
< Προηγ.   Επόμ. >

Φυσική

Μηχανική

Ταλαντώσεις και Κύματα

Ηλεκτρομαγνητισμός

Οπτική

 
Joomla Templates by Joomlashack