Seilias

Physics and Photography

Τα Δημοφιλέστερα του Μήνα

Στατιστικά

Επισκέπτες: 12917982

Τελευταία Ενημέρωση

07/12/2024

Who's Online

Έχουμε 1 επισκέπτη online

Σχόλια - Παρατηρήσεις

    Η ιστοσελίδα seilias.gr
  • ΔΕΝ χρησιμοποιεί cookies.
  • ΔΕΝ απαιτεί εγγραφή.
  • ΔΕΝ καταγράφει και δεν απαιτεί για την πλήρη χρήση της κανένα προσωπικό σας δεδομένο.
  • ΔΕΝ υπάρχουν διαφημίσεις.
  • ΔΕΝ απαιτεί συνδρομή, είναι Δωρεάν.
Για σχόλια,  παρατηρήσεις,  διορθώσεις, αβλεψίες κλπ μη διστάσετε να επικοινωνήστε μαζί μου. Όσες προσομοιώσεις φέρουν το όνομά μου είναι ελεύθερες προς χρήση από όλους, αρκεί να μην αλλαχθούν τα σύμβολα πνευματικής ιδιοκτησίας. Τα αρχεία μπορείτε να τα βρείτε στο menu Download.
 

Σύνδεση






Ξεχάσατε τον κωδικό σας;

Με δυο λόγια

 Το ξέρατε ότι  η εξάτμιση έχει σαν αποτέλεσμα την ψύξη?


Να γιατί κινδυνεύουμε να πάθουμε ψύξη όταν βγαίνουμε έξω με βρεγμένα μαλλιά ακόμη και αν είναι καλοκαίρι.

 
Αρχική
Μαΐ
14
2019
Δυνάμεις Μεταξύ Ρευμάτων - HTML5 Εκτύπωση E-mail
(9 ψήφοι)

Τα δύο σύρματα είναι παράλληλα και διαρρέονται από ομόρροπα ρεύματα $I_1$ και $I_2$ και απέχουν απόσταση $d$ μεταξύ τους. Ζητούμε να βρούμε

α. Την ένταση του μαγνητικού πεδίου σε ένα σημείο που απέχει απόσταση $x$ από το το 1ο σύρμα.
β. Το σημείο στο οποίο μηδενίζεται η ένταση του μαγνητικού πεδίου.
γ. Το μέτρο της δύναμης που ασκεί το ένα στο άλλο.

Τα δύο σχήματα αναπαριστούν το ίδιο φαινόμενο με διαφορετική προοπτική.

α.

Από τον κανόντα των τριών δακτύλων τα διανύσματα των εντάσεων που δημιουργεί ο κάθε αγωγός σημειώνονται στο σχήμα. Παρατηρούμε ότι τα διανύσματα έχουν αντίθετες κατευθύνσεις οπότε η συνισταμένη ένταση θα είναι

$$\vec{B}=\vec{B}_1+\vec{B}_2$$

θεωρώντας θετική φορά προς τα πάνω έχουμε

$$B=B_1+(-B_2)$$ $$B=k\mathsf{_{μαγ}}\frac{2I_1}{x}-k\mathsf{_{μαγ}}\frac{2I_2}{d-x}$$ $$B=2k\mathsf{_{μαγ}}\left(\frac{I_1}{x}-\frac{I_2}{d-x}\right)$$

β.

Η ένταση του μαγνητικού πεδίου μηδενίζεται όταν

$$0=2k\mathsf{_{μαγ}}\left(\frac{I_1}{x}-\frac{I_2}{d-x}\right)$$ $$\frac{I_1}{x}=\frac{I_2}{d-x}$$ $$x=\frac{I_1}{I_1+I_2}d$$

γ.

Για να βρούμε την δύναμη που ασκεί ο πρώτος αγωγός στον δεύτερο θα βρούμε αρχικά το μαγνητικό πεδίο που δημιουργεί ο 1ος αγωγός στην θέση που βρίσκεται ο δεύτερος.

$$B_1=k\mathsf{_{μαγ}}\frac{2I_1}{d}$$

Το μέτρο της δύναμης $\vec{F}_2$ που δέχεται ο δεύτερος αγωγός είναι

$$F_2=I_2\ell B_1$$ $$F_2=I_2\ell k\mathsf{_{μαγ}}\frac{2I_1}{d}$$ $$F_2=k\mathsf{_{μαγ}}\frac{2I_1I_2}{d}\ell$$

και η δύναμη ανα μονάδα μήκους

$$\frac{F_2}{\ell}=k\mathsf{_{μαγ}}\frac{2I_1I_2}{d}$$

Σχόλια
Προσθήκη νέου Αναζήτηση
+/-
Γράψτε σχόλιο
Όνομα:
Email:
 
Τίτλος:
 
Νίκος Βέης  - Εξαιρετικό   |194.63.232.xxx |21-Feb-2024 12:20:05
Εξαιρετικό, μπράβο..

3.26 Copyright (C) 2008 Compojoom.com / Copyright (C) 2007 Alain Georgette / Copyright (C) 2006 Frantisek Hliva. All rights reserved."

Τελευταία ανανέωση ( 18.04.22 )
 
< Προηγ.   Επόμ. >

Φυσική

Μηχανική

Ηλεκτρομαγνητισμός

 
Joomla Templates by Joomlashack