Για σχόλια, παρατηρήσεις, διορθώσεις, αβλεψίες κλπ μη
διστάσετε να επικοινωνήστε μαζί μου. Όσες προσομοιώσεις φέρουν το όνομά μου είναι ελεύθερες προς χρήση από
όλους, αρκεί να μην αλλαχθούν τα σύμβολα πνευματικής ιδιοκτησίας. Τα
αρχεία μπορείτε να τα βρείτε στο menu Download.
Σύνδεση
Με δυο λόγια
Τι ύψος πρέπει να έχει ένας καθρέφτης για να φανούμε ολόκληροι;
Ακριβώς το μισό μας ύψος. Δηλαδή αν το ύψος μας είναι 1.80m τότε ένας καθρέφτης των 0.90m (90 πόντους) είναι αρκετός για να μας δείξει ολόκληρους, αρκεί να τοποθετηθεί σωστά. Θα πρέπει το πάνω μέρος του να είναι στο ύψος του μετώπου μας.
Εφαρμογή με την οποία μπορούμε να μελετήσουμε την αδιαβατική μεταβολή ιδανικού μονοατομικού αερίου. Σύροντας το πάνω μέρος του δοχείου μπορούμε να καθορίσουμε τον όγκο του αερίου. Μπορούμε να μεταβάλλουμε τον ρυθμό με τον οποίο το αέριο ανταλλάσσει ενέργεια με την μορφή έργου με το περιβάλλον. Θετικός ρυθμός σημαίνει ότι το αέριο προσφέρει ενέργεια με την μορφή έργου. Μπορούμε να δούμε την μορφή που παίρνουν τα διαγράμματα p — V , p — T και V — T σε κάθε περίπτωση πατώντας στο αντίστοιχο κουμπί. Μπορούμε να σύρουμε τη γραφική παράσταση της μεταβολής στο διάγραμμα p — V και να δημιουργήσουμε αντίγραφα πατώντας το κουμπί της φωτογραφικής μηχανής. Μπορούμε να αποκρύψουμε τα διαγράμματα και να διαγράψουμε τα αντίγραφα πατώντας το πλήκτρο x. Ο καθορισμός των μεγεθών μπορεί να γίνει και σύροντας το σημείο στο διάγραμμα.
Κατεβάστε την εφαρμογή για λειτουργία σε τοπικό επίπεδο χωρίς να απαιτείται σύνδεση στο Internet.
Αδιαβατική Μεταβολή
Η αδιαβατική μεταβολή είναι μια αντιστρεπτή μεταβολή στην οποία το αέριο δεν αναταλλάσει θερμότητα με το περιβάλλον του.
$Q=0$
$$(1)$$
Η μαθηματική εξίσωση που περιγράφει το φαινόμενο είναι
$$pV^γ=\mathsf{σταθ.}$$
$$(2)$$
Για δύο διαφορετικές καταστάσεις του αερίου θα ισχύει
$$p_1V_1^γ=p_2V_2^γ$$
Από την εξίσωση $(2)$ με απαλειφή της πίεσης $p=\frac{nRT}{V}$ μέσω της καταστατικής εξίσωσης προκύπτει
$$TV^{γ-1}=\mathsf{σταθ.}$$
$$(3)$$
ενώ με απαλειφή του όγκου $V=\frac{nRT}{p}$ προκύπτει
$$p^{1-γ}V^γ=\mathsf{σταθ.}$$
$$(4)$$
Ενεργειακά
Από τον ορισμό της αδιαβατικής $(Q=0)$ και από τον 1ο θερμοδυναμικό νόμο $Q=ΔU+W$ προκύπτει
$$W=-ΔU$$
$$(5)$$
Από την παραπάνω εξίσωση προκύπτει πως αν το αέριο εκτονώνεται δηλαδή $W>0$ τότε επειδή $ΔU=-W$ προκύπτει πως $ΔU<0$ δηλαδή το αέριο ψύχεται.
Επειδή η αδιαβατική εκτόνωση συνοδεύεται από ψύξη προκύπτει πως σε ένα διάγραμμα $p - V$ καθώς αυξάνεται ο όγκος θα πηγαίνουμε σε πιο χαμηλές θερμοκρασίες συμπαιρένουμε πως μια αδιαβατική είναι πιο "απότομη" έχει δηλαδή μεγαλύτερη κλίση από την αντίστοιχη ισόθερμη.
Το έργο στην αδιαβατική μεταβολή εκτός από την εξίσωη $W=-ΔU$ μπορεί να υπολογιστεί και από την εξίσωση
Felicitaciones por este trabajo, son de los mejores que he visto, Sr Sitsanlis gracias por aportar a la enseñanza-aprendizaje de la juventud.
No se si posteriormente sea factible descarga