Seilias

Physics and Photography

Σχόλια - Παρατηρήσεις

Για σχόλια,  παρατηρήσεις,  διορθώσεις, αβλεψίες κλπ μη διστάσετε να επικοινωνήστε μαζί μου. Όσες προσομοιώσεις φέρουν το όνομά μου είναι ελεύθερες προς χρήση από όλους, αρκεί να μην αλλαχθούν τα σύμβολα πνευματικής ιδιοκτησίας. Τα αρχεία μπορείτε να τα βρείτε στο menu Download.
 

Σύνδεση






Ξεχάσατε τον κωδικό σας;

Με δυο λόγια

Ποιός έχει το απόλυτο ρεκόρ στην ταχύτητα;

Το φως! κινείται με ταχύτητα 300.000 km/s. Βέβαια Ο Λούκυ Λούκ είναι πιο γρήγορος από την σκιά του αλλά εκεί η Φυσική ... σηκώνει ψηλά τα χέρια.

 
Αρχική arrow Φυσική arrow Μηχανική arrow Οριζόντια Βολή - HTML5
Σεπ
15
2018
Οριζόντια Βολή - HTML5 Εκτύπωση E-mail
(5 ψήφοι)
Με την συγκεκριμένη προσομοίωση μπορούμε να μελετήσουμε την οριζόντια βολή. Μπορούμε να μεταβάλλουμε την αρχική ταχύτητα, το ύψος και την επιτάχυνση της βαρύτητας. Για την αλλαγή του ύψους μπορούμε να σύρουμε το σώμα. Για να μηδενίσουμε (επαναφέρουμε) γρήγορα την επιτάχυνση της βαρύτητας και την αρχική ταχύτητα τσεκάρουμε τις αντίστοιχες επιλογές.

Κατεβάστε την εφαρμογή για λειτουργία σε τοπικό επίπεδο χωρίς να απαιτείται σύνδεση στο Internet.

Οριζόντια βολή είναι η κίνηση που εκτελεί ένα σώμα όταν το εκτοξεύουμε οριζόντια (ή κάθετα στην επιτάχυνση της βαρύτητας) μέσα στο πεδίο βαρύτητας της Γης.


(σχ. 1)

Επειδή η δύναμη, η επιτάχυνση, η ταχύτητα και η θέση είναι διανυσματκά μεγέθη μπορούμε να τα αναλύσουμε σε συνιστώσες σε δύο άξονες $x'x$ και $y'y$. Αυτό είναι διατυπωμένο συχνά και "ως αρχή της ανεξαρτησίας των κινήσεων". Δηλαδή αν θέλουμε να βρούμε την θέση $(x,y)$ του σώματος κάποιο χρονική στιγμή $t$ μπορούμε να φανταστούμε ότι κάθε κίνηση γίνεται ανεξάρτατητα από την άλλη για το ίδιο χρονικό διάστημα $t$. Έτσι μπορούμε να βρούμε το $x$ και το $y$ σαν να είχαμε ανεξάρτητες κινήσεις με την αντίστοιχη επιτάχυνση σε κάθε άξονα.

Άξονας $x'x$

$$\sum F_x = ma_x$$ $$a_x=0$$

Δηλαδή η κίνηση στον άξονα $x'x$ είναι ευθύγραμμη ομαλή. Οπότε

 

$$υ_x=υ_0$$ $$(1)$$
και

 

$$x=υ_0t$$ $$(2)$$

Άξονας $y'y$

Στον άξονα $y'y$ το σώμα εκτελεί ευθύγραμμη ομαλά επιταχυνόμενη κίνηση με επιτάχυνση $\vec g$. Αν και συνήθως ο άξονας προσανατολίζεται με την θετική φορά "προς τα πάνω" προκειμένου να αποφύγουμε τα αρνητικά πρόσημα επιλέγουμε την θετική φορά προς τα κάτω σύμφωνα με την φορά της επιτάχυνσης της βαρύτητας. Δηλαδή $a=g$. Οπότε

$$\sum F_y = ma_y$$ $$mg=ma_y$$ $$a_y=g$$ άρα

 

$$υ_y=gt$$ $$(3)$$
και

 

$$y=\frac12 gt^2$$ $$(4)$$

Σε κάθε χρονική στιγμή το διάνυσμα της ταχύτητας $\vec υ=\left(υ_x,υ_y\right)$ έχει μέτρο

$$υ=\sqrt{υ_x^2+υ_y^2}$$

 

$$υ=\sqrt{υ_0^2+\left(gt\right)^2}$$ $$(5)$$
και σχηματίζει με τον άξονα $x'x$ διεύθυνση

 

$$\mathsf{εφ\,}θ=\frac{υ_y}{υ_x}$$ $$(6)$$

Για να βρούμε την εξίσωση που περιγράφει την τροχιά του σώματος απαλείφουμε τον χρόνο από τις εξισώσεις $(2)$ και $(4)$

Από την $(2)$ $$t=\frac{x}{υ_0}$$ και από την $(4)$ $$y=\frac12 gt^2$$ $$y=\frac12 g\left(\frac{x}{υ_0}\right)^2$$

 

$$y=\frac{g}{2υ_0^2}x^2$$ $$(7)$$
Σχόλια
Προσθήκη νέου Αναζήτηση
+/-
Γράψτε σχόλιο
Όνομα:
Email:
 
Τίτλος:
 

3.26 Copyright (C) 2008 Compojoom.com / Copyright (C) 2007 Alain Georgette / Copyright (C) 2006 Frantisek Hliva. All rights reserved."

Τελευταία ανανέωση ( 26.11.19 )
 
< Προηγ.   Επόμ. >

Φυσική

Μηχανική

Ταλαντώσεις και Κύματα

Ηλεκτρομαγνητισμός

Οπτική

 
Joomla Templates by Joomlashack